Réviser mon Concours

Sujets et corrections des épreuves de concours post-bac

Filtrez les documents de CPGE ECG 1ère année par mots clés

Recherche  49 docs en CPGE-ECG-1 Ajouter  Ajouter votre document

Mots clés  

TypeTitreCor.AnMots clésDate Maj
1782Devoirs Surveillés2024 - 2025 - DS 01 de rentrée et corrigé - ECG1 Math AppliC-devoir, corrigé, équations, inéquation, suites, fonctions, récurrence  devoir, corrige, equations, inequation, suites, fonctions, recurrence,2024 - 2025 - DS 01 de rentree et corrige - ECG1 Math Appli, corrigé,correction,corrige pinel ,Mathématiques Appliquées DS2024-09-12 17:37:21
1784CoursChapitre 04 - Sommes et Produits - ECG1 Appli--symbole sigma, sommes de référence, produits finis  symbole sigma, sommes de reference, produits finis,Chapitre 04 - Sommes et Produits - ECG1 Appli, pinel ,Mathématiques Appliquées Cours2024-09-09 00:19:13
1783CoursChapitre 03 - Limites de fonctions - ECG1 Appli--limites, formes indéterminées, opérations, croissances comparées  limites, formes indeterminees, operations, croissances comparees,Chapitre 03 - Limites de fonctions - ECG1 Appli, pinel ,Mathématiques Appliquées Cours2024-09-09 00:12:59
1780CoursChapitre 01 - Raisonnements en Mathématiques - ECG1 Maths Appli--ecg1, cours, math appli, raisonnements, récurrence  ecg1, cours, math appli, raisonnements, recurrence,Chapitre 01 - Raisonnements en Mathematiques - ECG1 Maths Appli, pinel ,Mathématiques Appliquées Cours2024-08-29 10:36:09
1781CoursChapitre 02 - Généralités sur les fonctions - ECG1 maths appliquées--ecg1, cours, fonctions usuelles  ecg1, cours, fonctions usuelles,Chapitre 02 - Generalites sur les fonctions - ECG1 maths appliquees, pinel ,Mathématiques Appliquées Cours2024-08-29 10:35:43
1779Fiches d'exercices2024 - 2025 Travail de révisions pour la rentrée en CPGE ECG1 - Mathématiques appliquéesC-révisions, math appli, suite, fonction, calcul Travail de rentrée pour les ECG1 mathématiques appliquées. Exercices corrigés d'analyse de difficulté diverse pour étudiants issus de spécialité math ou de math complémentaire.  revisions, math appli, suite, fonction, calcul,2024 - 2025 Travail de revisions pour la rentree en CPGE ECG1 - Mathematiques appliquees,Travail de rentree pour les ECG1 mathematiques appliquees. Exercices corriges d'analyse de difficulte diverse pour etudiants issus de specialite math ou de math complementaire.  corrigé,correction,corrige pinel ,Mathématiques Appliquées Fiches-exercices2024-08-18 15:17:20
1768CoursECG1 - Chap16- Cours&TD -Couple de Variables Aléatoires Discrètes--Couple de Variables Aléatoires Discrètes  Couple de Variables Aleatoires Discretes,ECG1 - Chap16- Cours&TD -Couple de Variables Aleatoires Discretes, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 15:36:08
1769CoursECG1 - Chap17- Cours&TD -Convergence et Approximation de Variables Aléatoires--Convergence et Approximation de Variables Aléatoires  Convergence et Approximation de Variables Aleatoires,ECG1 - Chap17- Cours&TD -Convergence et Approximation de Variables Aleatoires, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 15:33:59
1767CoursECG1 - Chap15- Cours&TD -Intégrales impropres--Intégrales impropres ou généralisées  Integrales impropres ou generalisees,ECG1 - Chap15- Cours&TD -Integrales impropres, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 15:20:03
1766CoursECG1 - Chap14- Cours&TD -Espaces Proba. infinis Dénombrables - V.A Discrètes--Espaces probabilisés infinis dénombrables Variables aléatoires discrètes Lois usuelles  Espaces probabilises infinis denombrables Variables aleatoires discretes Lois usuelles,ECG1 - Chap14- Cours&TD -Espaces Proba. infinis Denombrables - V.A Discretes, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 15:13:47
1765CoursECG1 - Chap13- Cours&TD -Etude de fonctions - DL- Formules de taylor--Développements limités et applications Etudes locales et globales de fonctions Formules de Taylor  Developpements limites et applications Etudes locales et globales de fonctions Formules de Taylor,ECG1 - Chap13- Cours&TD -Etude de fonctions - DL- Formules de taylor, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 15:04:14
1764CoursECG1-Chap12 - Cours & TD - Applications linéaires en dimension finie--Applications linéaires en dimension finie  Rang, morphismes, représentation matricielle Applications lineaires en dimension finie ,ECG1-Chap12 - Cours & TD - Applications lineaires en dimension finie,Rang, morphismes, representation matricielle Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:53:58
1761CoursECG1- chap10- Cours&TD - Applications linéaires--applications linéaires: définition, propriétés, opérations - Polynômes d'endomorphisme - Noyau et image d'une application linéaire - Projecteurs  applications lineaires: definition, proprietes, operations - Polynomes d'endomorphisme - Noyau et image d'une application lineaire - Projecteurs,ECG1- chap10- Cours&TD - Applications lineaires, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:51:31
1759CoursECG1- Chap 8 - Cours&TD: Espaces vectoriels de dimension finie--Base et sous-espace vectoriel en dimension finie, rang d'une famille de vecteurs, somme d'ev, sev supplémentaires  Base et sous-espace vectoriel en dimension finie, rang d'une famille de vecteurs, somme d'ev, sev supplementaires,ECG1- Chap 8 - Cours&TD: Espaces vectoriels de dimension finie, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:50:54
1758CoursECG1 - Chap7- Cours&TD -Probabilités discrètes finies--Probabilité sur un univers fini - Conditionnement - Variables aléatoires discrètes finies - Lois usuelles finies  Probabilite sur un univers fini - Conditionnement - Variables aleatoires discretes finies - Lois usuelles finies,ECG1 - Chap7- Cours&TD -Probabilites discretes finies, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:50:33
1746CoursECG1-chap 6- Cours&TD- intégration--Intégration sur un segment - intégrale et primitive - Sommes de Riemann  Integration sur un segment - integrale et primitive - Sommes de Riemann,ECG1-chap 6- Cours&TD- integration, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:49:54
1741CoursECG1- Chap 5 - Cours&TD: Fonctions numériques - Limites - Continuité - Dérivabilité--Fonctions de références- Limites - Continuité - Dérivabilité  Fonctions de references- Limites - Continuite - Derivabilite,ECG1- Chap 5 - Cours&TD: Fonctions numeriques - Limites - Continuite - Derivabilite, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:49:37
1735CoursECG1-Chap4- Cours&TD: Matrices - Systèmes linéaires - Intro Espace Vectoriel--calcul matriciel, matrices rectangulaires, matrices carrées, inverses d'une matrice - Systèmes linéaires, méthode de Gauss - Introduction aux espaces Vectoriels (famille libre famille génératrice, base)  calcul matriciel, matrices rectangulaires, matrices carrees, inverses d'une matrice - Systemes lineaires, methode de Gauss - Introduction aux espaces Vectoriels (famille libre famille generatrice, base),ECG1-Chap4- Cours&TD: Matrices - Systemes lineaires - Intro Espace Vectoriel, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:49:16
1734CoursECG1- Chap3 - Cours&TD: Polynômes--Coefficients Binomiaux - Polynômes - Division euclidienne - factorisation cours et TD polynômes  Coefficients Binomiaux - Polynomes - Division euclidienne - factorisation,ECG1- Chap3 - Cours&TD: Polynomes,cours et TD polynomes  Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:48:57
1726CoursECG1- Chap2 - Cours&TD: Ensemble R - Suites Numériques - Convergence - Suites usuelles--Ensemble des réels, suites - convergence - suites usuelles  Ensemble des reels, suites - convergence - suites usuelles,ECG1- Chap2 - Cours&TD: Ensemble R - Suites Numeriques - Convergence - Suites usuelles, Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:48:37
1719CoursECG1- Chap1 - cours & TD: Raisonnement -Récurrence -Sommes - Ensembles - Applications--Logique, Récurrence, Sommes, Produits, Ensembles, Applications ECG1 - cours - Mise à jour du doc 993 Logique, Recurrence, Sommes, Produits, Ensembles, Applications,ECG1- Chap1 - cours & TD: Raisonnement -Recurrence -Sommes - Ensembles - Applications,ECG1 - cours - Mise a jour du doc 993 Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:48:11
1763CoursECG1-Chap 11 - Cours & TD -Séries numériques--série numérique réelle, convergence, somme Cours et TD  série absolument convergente, séries géométriques et dérivées, série exponentielle, série de Riemann Critères pour les séries à termes positifs serie numerique reelle, convergence, somme Cours et TD ,ECG1-Chap 11 - Cours & TD -Series numeriques,serie absolument convergente, series geometriques et derivees, serie exponentielle, serie de Riemann Criteres pour les series a termes positifs Gerbauxo ,Mathématiques Approfondies Cours2023-08-21 14:47:01
1709Fiches d'exercicesTravail de révisions, avec corrigés - Maths Approfondies en ECG1C-suites, fonctions, dérivés, limites, calculs Voici une fiche de révision mise à jour depuis la réforme du lycée. Base de travail : le programme de Math Complémentaire, un peu enrichi parfois! suites, fonctions, derives, limites, calculs,Travail de revisions, avec corriges - Maths Approfondies en ECG1,Voici une fiche de revision mise a jour depuis la reforme du lycee. Base de travail : le programme de Math Complementaire, un peu enrichi parfois! corrigé,correction,corrige pinel ,Mathématiques Approfondies Fiches-exercices2023-06-26 10:01:37
1727Fiches d'exercicesECG1-Info-TP Prise en main Pythonnon-Prise en main Python - Test conditionnel - Boucle For While  Prise en main Python - Test conditionnel - Boucle For While,ECG1-Info-TP Prise en main Python, Gerbauxo ,Mathématiques Approfondies Fiches-exercices2022-10-26 16:38:47
1724Devoirs SurveillésDS de rentrée Avec Corrigé Math Appro ECG1C-Révisions de Terminale, Suites, fonctions, calculs algébriques  Revisions de Terminale, Suites, fonctions, calculs algebriques,DS de rentree Avec Corrige Math Appro ECG1, corrigé,correction,corrige Gerbauxo ,Mathématiques Approfondies DS2022-09-14 09:43:45
991Fiches d'exercicesExercices corrigés du site classés par niveau, pour ECS1C-exos corrigés, révision, khôlle, ds, concours blanc  Idéal pour des révisions de 1ère année ou pour faire des petits retours avant les concours de deuxième année !  exos corriges, revision, kholle, ds, concours blanc ,Exercices corriges du site classes par niveau, pour ECS1,Ideal pour des revisions de 1ere annee ou pour faire des petits retours avant les concours de deuxieme annee !  corrigé,correction,corrige pinel ,Mathématiques,Mathématiques Approfondies Fiches-exercices2022-07-05 12:00:32
1509Fiches d'exercicesExos corrigés de révisions pour la rentrée en prépa Eco ECG 1ère annéeC-révision rentrée, exercice corrigé Afin que votre rentrée se déroule le mieux possible, abordez sérieusement et REGULIEREMENT chaque thème proposé. Au programme du premier DS : équations, inéquations, fonctions (dérivée, limites, continuité), et suites récurrentes, sommes. revision rentree, exercice corrige,Exos corriges de revisions pour la rentree en prepa Eco ECG 1ere annee,Afin que votre rentree se deroule le mieux possible, abordez serieusement et REGULIEREMENT chaque theme propose. Au programme du premier DS : equations, inequations, fonctions (derivee, limites, continuite), et suites recurrentes, sommes. corrigé,correction,corrige pinel ,Mathématiques Fiches-exercices2022-06-14 16:26:55
1717Concours Blanc2021-2022 Concours Blanc 02 et corrigé en Mathématiques Approfondies, ECG1C-séries, v.a. discrètes infinies, fonctions, espaces vectoriels Problème 01 : variables aléatoires discrètes, espérance, variance, séries, Taylor-Lagrange ; Pb 02 : sinus et cosinus hyperboliques - d'après EML S 2022 ; Exo 01 : algèbre linéaire, espaces vectoriels series, v.a. discretes infinies, fonctions, espaces vectoriels,2021-2022 Concours Blanc 02 et corrige en Mathematiques Approfondies, ECG1,Probleme 01 : variables aleatoires discretes, esperance, variance, series, Taylor-Lagrange ; Pb 02 : sinus et cosinus hyperboliques - d'apres EML S 2022 ; Exo 01 : algebre lineaire, espaces vectoriels corrigé,correction,corrige pinel ,Mathématiques Approfondies sujets-concours-blancs2022-06-02 00:48:47
1160CoursChapite sur les intégrales impropres, Prépa ECG--intégrale, intégration, convergence Définition de la notion d'intégrale impropre ou généralisée. Propriétés des intégrales impropres et critères de convergence. Intégrales de référence et exemples corrigés. integrale, integration, convergence,Chapite sur les integrales impropres, Prepa ECG,Definition de la notion d'integrale impropre ou generalisee. Proprietes des integrales impropres et criteres de convergence. Integrales de reference et exemples corriges. pinel ,Mathématiques,Mathématiques Approfondies Cours2022-05-24 11:32:25
1716Devoirs Surveillés2021-2022 - DS 07 et corrigé - Maths ApprofondiesC-DL, inégalité de Taylor, convexité, algèbre linéaire, série Exo 1 : applications du cours (DL, Taylor Lagrange, somme de séries...) ; Exo 2 : endomorphisme de polynôme, rang, noyau... Problème d'analyse : suite, somme, série, somme.. DL, inegalite de Taylor, convexite, algebre lineaire, serie,2021-2022 - DS 07 et corrige - Maths Approfondies,Exo 1 : applications du cours (DL, Taylor Lagrange, somme de series...) ; Exo 2 : endomorphisme de polynome, rang, noyau... Probleme d'analyse : suite, somme, serie, somme.. corrigé,correction,corrige pinel ,Mathématiques Approfondies DS2022-05-22 14:55:25
1136CoursChapitre sur les espaces probabilisés infinis, les variables aléatoires discrètes et lois usuelles--probabilité, v.a, loi, v.a.r.d, espérance, variance, loi géométrique, loi de poisson, loi binomiale, loi de bernoulli, loi uniforme finie, scilab Partie A : d'espace probabilisable, Théorème de limite monotone et conséquences, conditionnement et indépendance dans le cadre discret infini. Partie B : Etude des variables aléatoires discrètes infinies, fonction de répartition, moments d'une va et liens avec l'espérance et la variance (calculs de somme de séries). Partie C : rappels sur les lois finies usuelles (uniforme, bernoulli, binomiale avec simulations) et présentation des lois discrètes infinies usuelles (Géométrique et Poisson) probabilite, v.a, loi, v.a.r.d, esperance, variance, loi geometrique, loi de poisson, loi binomiale, loi de bernoulli, loi uniforme finie, scilab,Chapitre sur les espaces probabilises infinis, les variables aleatoires discretes et lois usuelles,Partie A : d'espace probabilisable, Theoreme de limite monotone et consequences, conditionnement et independance dans le cadre discret infini. Partie B : Etude des variables aleatoires discretes infinies, fonction de repartition, moments d'une va et liens avec l'esperance et la variance (calculs de somme de series). Partie C : rappels sur les lois finies usuelles (uniforme, bernoulli, binomiale avec simulations) et presentation des lois discretes infinies usuelles (Geometrique et Poisson) pinel ,Mathématiques,Mathématiques Approfondies Cours2022-05-09 09:26:28
1715Devoirs Surveillés2021-2022 - Test corrigé ECG1 : Séries, applications linéaires C-séries, noyau, image Nature et somme de séries. Applications linéaires en dimension finie series, noyau, image,2021-2022 - Test corrige ECG1 : Series, applications lineaires ,Nature et somme de series. Applications lineaires en dimension finie corrigé,correction,corrige pinel ,Mathématiques Approfondies DS2022-04-29 16:44:41
1120CoursDéveloppements limités, cours pour ECG1 - Maths approfondies--dérivée, extremum, convexité, inflexion, Taylor,développement limité, DL Les études locales et globales des fonctions se précisent avec la notion de convexité/concavité, d'extremums et de points d'inflexion. Les formules de Taylor avec reste intégral, puis de Taylor-Young permettront d'introduire la notion de développement limité (dl) d'une fonction, afin de : lever des formes indéterminées de limites, étudier les positions relatives de Cf avec tangente ou asymptote, ou encore étudier la nature d'une série. derivee, extremum, convexite, inflexion, Taylor,developpement limite, DL,Developpements limites, cours pour ECG1 - Maths approfondies,Les etudes locales et globales des fonctions se precisent avec la notion de convexite/concavite, d'extremums et de points d'inflexion. Les formules de Taylor avec reste integral, puis de Taylor-Young permettront d'introduire la notion de developpement limite (dl) d'une fonction, afin de : lever des formes indeterminees de limites, etudier les positions relatives de Cf avec tangente ou asymptote, ou encore etudier la nature d'une serie. pinel ,Mathématiques Approfondies Cours2022-04-10 22:34:33
1714Devoirs Surveillés2021-2022 DS06 de Mathématiques Approfondies et corrigéC-espaces vectoriels, matrice, intégration, lois usuelles finies  espaces vectoriels, matrice, integration, lois usuelles finies,2021-2022 DS06 de Mathematiques Approfondies et corrige, corrigé,correction,corrige pinel ,Mathématiques Approfondies DS2022-03-31 07:48:00
1104CoursECG1 Maths Approfondies : Applications linéaires en dimension finie--morphisme, dimension, rang, matrice En dimension finie, l'étude des applications linéaires se simplifient : espace image, Im(f), rang d'un endomorphisme, image d'une famille libre par un morphisme injective, d'une famille génératrice par une application surjective, isomorphismes canoniques, espaces isomorphes, théorème du rang. Ensuite : matrice d'une application linéaire, opérations sur les bases, image d'un vecteur et rang de matrices. morphisme, dimension, rang, matrice,ECG1 Maths Approfondies : Applications lineaires en dimension finie,En dimension finie, l'etude des applications lineaires se simplifient : espace image, Im(f), rang d'un endomorphisme, image d'une famille libre par un morphisme injective, d'une famille generatrice par une application surjective, isomorphismes canoniques, espaces isomorphes, theoreme du rang. Ensuite : matrice d'une application lineaire, operations sur les bases, image d'un vecteur et rang de matrices. pinel ,Mathématiques Approfondies Cours2022-02-27 00:08:06
1095CoursECG1 Maths Approfondies : Généralités sur les applications linéaires--morphisme, ev, noyau, image, projecteur Généralités sur les applications linéaires entre espaces vectoriels : premiers exemples classiques, endomorphisme, isomorphisme, automorphisme, forme linéaire, puissances et polynômes d'endomorphismes. Les notions de noyau (Ker) et d'image sont ensuite étudiées, en lien avec l'injectivité et la surjectivité. L'exemple de projecteur achève ce chapitre. morphisme, ev, noyau, image, projecteur,ECG1 Maths Approfondies : Generalites sur les applications lineaires,Generalites sur les applications lineaires entre espaces vectoriels : premiers exemples classiques, endomorphisme, isomorphisme, automorphisme, forme lineaire, puissances et polynomes d'endomorphismes. Les notions de noyau (Ker) et d'image sont ensuite etudiees, en lien avec l'injectivite et la surjectivite. L'exemple de projecteur acheve ce chapitre. pinel ,Mathématiques Approfondies Cours2022-02-26 14:37:00
1093CoursChapitre 10, ECG1 Math Appro : Equivalence et négligeabilité--fonction, suite, équivalent, limite Comparaisons de fonctions, de suites : notations de Landau (petit o), négligeabilité au voisinage de a. Limites et notions d'équivalence, équivalents classiques. fonction, suite, equivalent, limite,Chapitre 10, ECG1 Math Appro : Equivalence et negligeabilite,Comparaisons de fonctions, de suites : notations de Landau (petit o), negligeabilite au voisinage de a. Limites et notions d'equivalence, equivalents classiques. pinel ,Mathématiques Approfondies Cours2022-02-26 11:32:04
1713Devoirs Surveillés2021-2022 DS 05 de Mathématiques Approfondies et corrigé - Prépa ECG1C-fonction, suite, intégration  fonction, suite, integration,2021-2022 DS 05 de Mathematiques Approfondies et corrige - Prepa ECG1, corrigé,correction,corrige pinel ,Mathématiques Approfondies DS2022-02-09 08:44:53
1069CoursCours sur les espaces vectoriels de dimension finie, ECG1--ev, dimension, espace vectoriel, base Propriétés liées aux espaces vectoriels de dimension finie, lemme de Steiniz, théorème de la base incomplète, rang d'une famille de vecteurs, somme et somme directe, formule de Grassmann, espaces vectoriels supplémentaires ev, dimension, espace vectoriel, base,Cours sur les espaces vectoriels de dimension finie, ECG1,Proprietes liees aux espaces vectoriels de dimension finie, lemme de Steiniz, theoreme de la base incomplete, rang d'une famille de vecteurs, somme et somme directe, formule de Grassmann, espaces vectoriels supplementaires pinel ,Mathématiques Approfondies Cours2022-02-08 10:15:36
1058CoursChapitre d'intégration d'une fonction numérique--fonction, intégrale, primitive, suite Intégration : rappels de Terminale avec le calcul de primitives, les formules de référence, les propriétés de l'intégration. Quelques nouveautés avec l'étude des fonctions définies par une intégrale, la méthode d'intégration par parties et du changement de variables pour le calcul d'intégrales. Enfin, les suites seront encore présentes (!) avec les sommes de Riemann, et les exos classiques du type suites - intégrales. fonction, integrale, primitive, suite,Chapitre d'integration d'une fonction numerique,Integration : rappels de Terminale avec le calcul de primitives, les formules de reference, les proprietes de l'integration. Quelques nouveautes avec l'etude des fonctions definies par une integrale, la methode d'integration par parties et du changement de variables pour le calcul d'integrales. Enfin, les suites seront encore presentes (!) avec les sommes de Riemann, et les exos classiques du type suites - integrales. pinel ,Mathématiques Approfondies Cours2022-01-19 14:35:35
1070CoursProbabilités finies, conditionnelles - Lois usuelles et v.a., prépa ECG--probabilité, conditionnelle, variable aléatoire, loi, discrète, Bernoulli, Binomiale Définition de la notion de probabilité avec le vocabulaire qui s'en suit : événement, système complet d'événements (sce), formule du Crible, des probabilités totales. Ensuite vient la notion de probabilités conditionnelles avec la formule des probabilités composées, des probabilités totales et de Bayes. Indépendances mutuelles d'une famille, ou événements 2 à 2 indépendants et lemme des coalitions. La troisième partie traite des variables aléatoires finies : support, loi d'une v.a, espérance, variance et formule de Koenig-Huygens, transformée d'une v.a et théorème du transfert, fonction de répartition. La dernière partie présente les lois finies classiques : indicatrice, Bernoulli, Binomiale probabilite, conditionnelle, variable aleatoire, loi, discrete, Bernoulli, Binomiale,Probabilites finies, conditionnelles - Lois usuelles et v.a., prepa ECG,Definition de la notion de probabilite avec le vocabulaire qui s'en suit : evenement, systeme complet d'evenements (sce), formule du Crible, des probabilites totales. Ensuite vient la notion de probabilites conditionnelles avec la formule des probabilites composees, des probabilites totales et de Bayes. Independances mutuelles d'une famille, ou evenements 2 a 2 independants et lemme des coalitions. La troisieme partie traite des variables aleatoires finies : support, loi d'une v.a, esperance, variance et formule de Koenig-Huygens, transformee d'une v.a et theoreme du transfert, fonction de repartition. La derniere partie presente les lois finies classiques : indicatrice, Bernoulli, Binomiale pinel ,Mathématiques Approfondies Cours2022-01-16 15:00:04
1712Concours Blanc2021-2022 Concours Blanc 01 et corrigé - Maths Approfondies - Prépa Eco Philippine DuchesneC-suites, fonctions, suites implicites, puissance de matrices, division euclidienne, espaces vectoriels  suites, fonctions, suites implicites, puissance de matrices, division euclidienne, espaces vectoriels,2021-2022 Concours Blanc 01 et corrige - Maths Approfondies - Prepa Eco Philippine Duchesne, corrigé,correction,corrige pinel ,Mathématiques Approfondies sujets-concours-blancs2021-11-29 14:53:08
1053CoursChapitre sur les fonctions réelles d'une variable réelle, ECG1--fonction, bijection, iaf Etude de fonctions : variations, sup, inf, extrémums, parité, périodicité, limite, croissances comparées, théorème de la limite monotone, asymptotes. Continuité, prolongement par continuité, théorème des valeurs intermédiaires (tvi), image d'un segment, fonctions bijectives (exemple de la fonction arctangente). Dérivation et dérivabilité d'une fonction, théorème de Rolle et des accroissements finis, inégalité des accroissements finis (iaf : application à la convergence de suites), prolongement de la dérivée fonction, bijection, iaf,Chapitre sur les fonctions reelles d'une variable reelle, ECG1,Etude de fonctions : variations, sup, inf, extremums, parite, periodicite, limite, croissances comparees, theoreme de la limite monotone, asymptotes. Continuite, prolongement par continuite, theoreme des valeurs intermediaires (tvi), image d'un segment, fonctions bijectives (exemple de la fonction arctangente). Derivation et derivabilite d'une fonction, theoreme de Rolle et des accroissements finis, inegalite des accroissements finis (iaf : application a la convergence de suites), prolongement de la derivee pinel ,Mathématiques Approfondies Cours2021-11-03 17:16:07
1711Devoirs Surveillés2021-2022 DS02 de Maths Approfondies et corrigéC-sommes, récurrence, suites de référence, injection, surjecton, bijection, théorème de la bijection  sommes, recurrence, suites de reference, injection, surjecton, bijection, theoreme de la bijection,2021-2022 DS02 de Maths Approfondies et corrige, corrigé,correction,corrige pinel ,Mathématiques Approfondies DS2021-10-19 22:05:40
1007CoursCours ECG1 - Maths Approfondies : Convergence, suites usuelles--suite, limite, convergence Ce chapitre débute avec quelques précisions sur l'ensemble IR : voisinages, bornes supérieures, bornes inférieures. La notion de convergence d'une suite et de limite est ensuite abordée, avec les résultats principaux : convergence, divergence, opérations sur les limites, théorème de limite monotone, théorème du point fixe pour les suites de la forme un+1=f(un), croissances comparées et le cas des suites adjacentes est abordée. Enfin, les cas des suites de référence est traité : suites arithmétiques, géométriques, arithmético-géoémétriques et les suites récurrentes linéaires d'ordre 2. suite, limite, convergence,Cours ECG1 - Maths Approfondies : Convergence, suites usuelles,Ce chapitre debute avec quelques precisions sur l'ensemble IR : voisinages, bornes superieures, bornes inferieures. La notion de convergence d'une suite et de limite est ensuite abordee, avec les resultats principaux : convergence, divergence, operations sur les limites, theoreme de limite monotone, theoreme du point fixe pour les suites de la forme un+1=f(un), croissances comparees et le cas des suites adjacentes est abordee. Enfin, les cas des suites de reference est traite : suites arithmetiques, geometriques, arithmetico-geoemetriques et les suites recurrentes lineaires d'ordre 2. pinel ,Mathématiques Approfondies Cours2021-09-23 09:32:54
1710Devoirs Surveillés2021-2022 DS01 et corrigé - Math Approfondies ECG1C-équations, inéquations, règles de calculs, suites, récurrence, limite, dérivée  equations, inequations, regles de calculs, suites, recurrence, limite, derivee,2021-2022 DS01 et corrige - Math Approfondies ECG1, corrigé,correction,corrige pinel ,Mathématiques Approfondies DS2021-09-11 18:05:47
1030CoursCours ECG1 Maths Approfondies: matrices, systèmes, espaces vectoriels--matrice, système, espace vectoriel Ce chapitre, assez chargé, est scindé en trois parties. La partie A : calcul matriciel, produit, inverse pour les matrices carrées inversibles, puissance de matrices (formule de binôme, relation de récurrence). La partie B : étude des systèmes linéaires, système de Cramer, résolution via le calcul matriciel, méthode du pivot de Gauss (réduite de Gauss et application à l'inversibilité d'une matrice). Partie C : introduction à la structure d'espace vectoriel : combinaison linéaire, famille libre, génératrice, base (canonique) d'un ev Des exemples et exercices corrigés sont proposés au fur et à mesure du chapitre. matrice, systeme, espace vectoriel,Cours ECG1 Maths Approfondies: matrices, systemes, espaces vectoriels,Ce chapitre, assez charge, est scinde en trois parties. La partie A : calcul matriciel, produit, inverse pour les matrices carrees inversibles, puissance de matrices (formule de binome, relation de recurrence). La partie B : etude des systemes lineaires, systeme de Cramer, resolution via le calcul matriciel, methode du pivot de Gauss (reduite de Gauss et application a l'inversibilite d'une matrice). Partie C : introduction a la structure d'espace vectoriel : combinaison lineaire, famille libre, generatrice, base (canonique) d'un ev Des exemples et exercices corriges sont proposes au fur et a mesure du chapitre. pinel ,Mathématiques Approfondies Cours2021-08-24 23:49:24
1014CoursECG1, Maths Approfondies : Chapitre sur les polynômes--polynôme, factorisation, racine Coefficients binomiaux et formule du binôme de Newton. Polynômes ou fonction polynôme : division euclidienne, avec notamment la recherche de reste ou de quotient. Racines et Factorisation. polynome, factorisation, racine,ECG1, Maths Approfondies : Chapitre sur les polynomes,Coefficients binomiaux et formule du binome de Newton. Polynomes ou fonction polynome : division euclidienne, avec notamment la recherche de reste ou de quotient. Racines et Factorisation. pinel ,Mathématiques Approfondies Cours2021-08-19 16:22:50
993CoursCours ECG1 - Maths Approfondies : Raisonnements, Ensembles, Applications--récurrence, somme, produit, application, ensemble Ce chapitre commence par une introduction aux différents raisonnements (disjonction des cas, par l'absurde, par récurrence simple double ou forte, par contraposée) puis à celle d'ensemble : image directe, produit cartésien, inclusion, union.. Les applications entre ensembles sont ensuite présentées : injections, surjections, bijections avec le théorème de bijection et des caractérisations des fonctions injectives, surjectives et bijectives. Les sommes finies usuelles sont aussi abordées avec les techniques classiques de calcul (télescopage, somme géométrique, arithmétique et changement d'indices) ainsi que les sommes doubles et produits finis de réels. recurrence, somme, produit, application, ensemble,Cours ECG1 - Maths Approfondies : Raisonnements, Ensembles, Applications,Ce chapitre commence par une introduction aux differents raisonnements (disjonction des cas, par l'absurde, par recurrence simple double ou forte, par contraposee) puis a celle d'ensemble : image directe, produit cartesien, inclusion, union.. Les applications entre ensembles sont ensuite presentees : injections, surjections, bijections avec le theoreme de bijection et des caracterisations des fonctions injectives, surjectives et bijectives. Les sommes finies usuelles sont aussi abordees avec les techniques classiques de calcul (telescopage, somme geometrique, arithmetique et changement d'indices) ainsi que les sommes doubles et produits finis de reels. pinel ,Mathématiques Approfondies Cours2021-08-15 08:55:51

Ajouter  Ajouter un document

CPGE ECG 1ère année

  • triez vos documents en cliquant en haut de chaque colonne
  • filtrez les à l'aide de mots clés : "concours corrigé", "ds matrice", "concours ccip anglais"
  • utilisez des regexp pour ceux qui connaissent !
 

Pour les enseignants...

Un moyen pratique d'accompagner les étudiants dans leurs révisions de concours ou d'examens mais aussi de profiter de supports d'autres enseignants.


Pour les élèves

Des sujets de concours, de Khôlles ou des exemples de cours pour vous aider dans vos révisions.


Et des fonctionnalités régulièrement mises à jour...

Inscription Flash!


Déjà membre ?


Identifiants oubliés?